Background: Diabetic nephropathy (DN) is one of the commonest etiologies for ESRD. Various studies suggest that diabetic nephropathy occurs due to the accumulation of advanced glycosylated end products (AGEs), the activation of isoforms of protein C kinase, etc. Correlation of renal arterial flow resistance, GFR, and progression towards ESRD in DN is not well narrated in literature. Therefore, the main object of the study was to assess renal arterial flow resistance in patients with DN and to compare it with patients having non-evident diabetic nephropathy.
Methods: This is a case control study done in a retrospective manner in the central part of Rajasthan, India, based upon data collection of admitted patients. Arbitrarily, a record of 40 cases (all males) consisting of poorly controlled diabetic cases (Hba1C >10 %) without nephropathy (n=20, group A) was compared with records of diabetic cases with nephropathy (n=20, group B). Group B had been further subdivided according to CKD (chronic kidney disease) staging. Data were examined for vital parameters, Serum creatinine, e- GFR, R.I. (resistive index) in renal arterial Doppler, urine albumin.
Results: Group A and group B were characteristically the same. In group B 7 cases had CKD 1(B1), 2 cases had CKD 2 (B2), 4 cases had CKD 3 (B3) and 7 cases had CKD 5(B5) stage. In group B there was a progressive rise in R.I. index parallel to decline in GFR, rise in albuminuria from B1 to B5 stage (p<0.001). These parameters were normal in group A.
Conclusion: It is concluded that DN begins from an increase in resistance to flow in renal arteries primarily resulting from resistance in afferent arterioles due to the reduction in size. This reduction may be because of increased ACE/ basal sympathetic activity at the beginning. Later on, there is a further increase in resistance due to progressive deposition of AGE end products in afferent arterioles further reducing the size and hydrostatic pressure at the afferent arteriolar end, resulting in a progressive decrease in GFR. Simultaneously hypo-perfusion of kidney tissue activates the renin-angiotensin system further reduces flow and progresses the DN.
Keywords:
Published on: Jun 22, 2019 Pages: 3-8
Full Text PDF
Full Text HTML
DOI: 10.17352/acn.000035
CrossMark
Publons
Harvard Library HOLLIS
Search IT
Semantic Scholar
Get Citation
Base Search
Scilit
OAI-PMH
ResearchGate
Academic Microsoft
GrowKudos
Universite de Paris
UW Libraries
SJSU King Library
SJSU King Library
NUS Library
McGill
DET KGL BIBLiOTEK
JCU Discovery
Universidad De Lima
WorldCat
VU on WorldCat
PTZ: We're glad you're here. Please click "create a new query" if you are a new visitor to our website and need further information from us.
If you are already a member of our network and need to keep track of any developments regarding a question you have already submitted, click "take me to my Query."